School for Young Scientists
Ru
Search
Research
Science Areas
Projects
Research Facilities
Publications
Peer-reviewed international papers
Books
Int. Conference Proceedings
Training Offer
PhD Courses
Young Scientist School
Staff
News
Research News
Scientific Events
Public Events
About WPI
History
Structure
Management
Staff
Academic Council
Early Career Scientists’ Council
Contacts
MainPublicationsPeer-reviewed international papersGelfan, A. N., Millionshchikova, T. D. Validation of a Hydrological Model Intended for Impact Study:...
Peer-reviewed international papers Books Int. Conference Proceedings

Gelfan, A. N., Millionshchikova, T. D. Validation of a Hydrological Model Intended for Impact Study: Problem Statement and Solution Example for Selenga River Basin. Water Resour., 2018. Vol. 45, Suppl. 1, pp. S90–S101

https://doi.org/10.1134/S0097807818050354

The study is aimed to evaluate a hydrological simulation model intended for assessing climate change impact.  A new test was suggested and applied to evaluate the performance of a physically based model of Selenga River runoff generation. In this test, to calibrate the model, an enhanced Nash–and-Sutcliffe efficiency (NSE) criterion was used, including trend-oriented reference (benchmark) models instead of the simple reference model used in the original NSE criterion. Next, modifications were made in the Differential Split Sample test (DSS-test) of V. Klemeš (1986), focused on differences in the model performance criteria for climatically contrasting periods and a new statistical measure was proposed to estimate the significance of these differences. After that, model performance was evaluated for four sites within the catchment, three indicators of interest (daily, monthly, and annual discharge series), and the model ability to reproduce the observed trends in annual and seasonal discharge values was assessed. The model proved robust enough to be applied to assessing climate change impact on the annual and monthly runoff in different parts of the Selenga River basin.


#FILE_1#

58e031dbae3c1998bc93fe1a1ae927c1.pdf

Date of publication:
06.06.2020
Author:
Gelfan Aleksandr Naumovich, Millionschikova Tatyana Dmitrievna

Оther publications
All publications
21.06.2021
S. Abdalla, A.A. Kolahchi, …, M.A. Sokolovskiy, … (International Altimetry Team, 361 authors). Altimetry for the future: Building on 25 years of progress. Advances in Space Research, 2021, v. 68, iss. 2, pp. 319–363.
09.03.2021
Gelfan A., A. Kalugin, I. Krylenko, O. Nasonova, Ye. Gusev and E. Kovalev (2020) Does a successful comprehensive evaluation increase confidence in a hydrological model intended for climate impact assessment? Climatic Change. 163(3), 1165-1185
08.02.2021
Rets, E.P., Durmanov, I.N., Kireeva, M.B. et al. Past ‘peak water’ in the North Caucasus: deglaciation drives a reduction in glacial runoff impacting summer river runoff and peak discharges. Climatic Change 163, 2135–2151 (2020)
08.02.2021
Kornilova E.D., Krylenko I.N., Rets E.P., Motovilov Y.G., Bogachenko E.M., Krylenko I.V., Petrakov D.A. Modeling of Extreme Hydrological Events in the Baksan River Basin, the Central Caucasus, Russia // Hydrology 2021, 8(1), 24
04.09.2020
Blöschl G., Bierkens M.F.P., Chambel A., Cudennec C….Gartsman B., Gelfan A….Twenty-three unsolved problems in hydrology (UPH) – a community perspective, Hydrological Sciences Journal, 64:10, 1141-1158, DOI: 10.1080/02626667.2019.1620507
03.09.2020
M.A. Sokolovskiy, K.V. Koshel, D.G. Dritschel, J.N. Reinaud. N-symmetric interaction of N hetons. I. Analysis of the case N = 2. Physics of Fluids, 2020, v. 32, N 9, 096601 (17 pp).
Research
Publications
Training Offer
Staff
News
About WPI
info@iwp.ru
+7 (499) 135-54-56 Management
+7 (499) 783-37-56 Ext.222 HR Department
+7 (499) 135-54-15 Fax
ul. Gubkina 3, Moscow, 119333, RUSSIA
Driving directions
Old version of the site
© 2015-2022 WATER PROBLEMS INSTITUTE
Development by