Rybak Oleg Olegovich
Rybak Oleg Olegovich
Position:
Principal Researcher (PhD, Doctor of Science (Habilitation))
Department: DEPARTMENT OF AQUATIC ENVIRONMENT DYNAMICS

 Education:


1986: Lomonosov Moscow State University, Department of Geography (B.Sc. and M.Sc.)

1991: Institute of Water Problems of the USSR Academy of Sciences, post-graduate student (Geophysics)
1992: Candidate of Science in Geography (Oceanology) (Ph.D.), thesis title: “Anomalies of heat- and water exchange of vast territories”, Lomonosov Moscow State University, Department of Geography
2011: Doctor of Science in Physics and Mathematics (Mathematical Modeling), thesis title: “Mathematical modelling of slowly flowing objects (the case study of internal areas of the ice sheets)”, Krasnodar, Russia



♦ Employment:


• 1992-2020: Junior Scientist, Scientist, Senior Scientist, Lead Scientist, Principal Scientist, Provisional Director at the Sochi Research Center of the Russian Academy of Sciences, Sochi, Russia

• 2002-2007: Post-Doctoral Researcher, Alfred-Wegener-Institute for Polar- and Marine Research, Bremerhaven, Germany

• 2008-2013: Research Associate, Earth System Science and Department of Geography, Vrije Universiteit Brussel, Brussels, Belgium

• 2020-present: Lead Scientist at Water Problems Institute of the Russian Academy of Sciences, Moscow



♦ Area of interests: 


• Climate-cryosphere interactions
• Mathematical modeling of ice sheets and mountain glaciers
• Palaeoclimatology and Palaeoglaciology



♦ Memberships:


• Member of the European Geosciences Union (EGU) since 2002
• Member of the editorial board of scientific journals:
Systems of Environmental Control (2016-present)
The International Journal of Ocean and Climate Systems (2008-2019)



♦ Scientific cooperation with: 


• Prof. Dr. Philippe Huybrechts and Ice and Climate Group, Faculty of Science and Bioengineering Science, Vrije Universiteit Brussel, Brussels, Belgium 

• Dr. Harry Zekollari, TU Delft, The Netherlands

• Prof. Dr. Maria Shagedanova, Geography and Environmental Science, Reading, United Kingdom

• Dr. Victor Popovnin, Department of Geography, Lomonosov Moscow State University
• R. Satylkanov, Tien Shan High Mountain Research Center, Institute of Water Problems and Hydropower of NAS KR, Bishkek, Kyrgyz Republic

• Dr. Ivan Lavrentiev, Dr. Stanislav Kutusov, Dr, Pavel Toropov, Dr. Irina Korneva, Department of Glaciology, Institute of Geography of the Russian Academy of Sciences, Moscow, Russia



♦ Refereeing:

• Journal of Glaciology

• Geoscientific Model Development

• Climate of the Past

• Atmósfera

• Liod I Sneg (‘Ice and Snow’)

• Kriosfera Zemli (‘Earth Cryosphere’)



♦ International Grants:


• INTAS, No 94-3614 (1994-1996) 93-0979 “Global Ice Sheets During the Last Two Climatic Cycles, with the Emphasis on Entering into New Glaciation” (executive, 1994-1998)

 



§ Author's profiles:

♦ Web of Science

♦ Research Gate

♦ Elibrary

♦ Scopus

♦ ORCID



♦ Books: 

2007: Rybak O.O. Mathematical modeling of the Antarctic ice sheet: theory, experiments and application for palaeoreconstructions, М.: Fizmatlit, 2007, 223 p.

2011: Rybak O.O. Mathematical modeling of the ice sheet evolution. М.: Fizmatlit, 223 p.

2016: Rybak O.O. Continental ice sheets. In: "Mathematical modeling of the Earth System" (ed. by N.G. Yakovlev), Moscow, MAKS-Press, pp. 213-238.

 



♦ Papers in Refereed Journals: 


Dobrovolski S.G., Rybak O.O., Jarosh J.S. Construction of dynamic-stochastic heat and water exchange

climate models using the approach of J. Adem, Geofisica Internacional, 1991, 30, 5-12.

Rybak, O.O. On the application of a dynamic-stochastic climate model to the simulation of the oceanic upper layer thermal variability, Atmósfera, 1992, 5, 181-192.

Dobrovolski S.G., Rybak O.O. Incorporation of Hydrologic Cycle Elements into the Dynamic-Stochastic Climate Model, GeoJournal, 1992, 27, 247-254.

Rybak E.A., Rybak O.O., Zasedatelev Y.V. Complex Geographical Analysis of the Greater Sochi Region on the Black Sea Coast, GeoJournal, 1994, 34, 507-513.

Dobrovolski S.G., Rybak O.O. On the phenomenon of local – global polarization, In: Contemporary Climatology  (Ed.  by  R.Brazdil),  Brno, Czech Republic, August 15-20, 1994, 165-168.

Rybak O.O. Dynamic-stochastic model of anomalous heat and water exchange in the global climate system, Izvestia RAS, Geographical Ser., 1995, No. 1, 58-68 [in Russian].

Rybak O.O. Statistical structure of air surface temperature time series, Atmósfera, 1997, 10, 59-74.

Rybak E.A., Rybak O.O. Autoregressive estimates of relations between fields of surface air temperature and large-scale circulation of the atmosphere, Meteorologia i gidrologia, 2002, No. 4, 39-49 [in Russian].

Rybak O., Huybrechts P. A comparison of Eulerian and Lagrangian methods for dating in numerical ice-sheet models, Annals of Glaciology, 2003, 37, 150-158.

Rybak O. Spectra of Isotopic Records: Marine Sediments vs Ice Core, ASOF Newsletter, 2005, Issue 4, 20-23.

Rybak E.A., Rybak O.O. On the spectral structure of the North Atlantic Oscillation, Meteorologia i gidrologia, 2005, No 3, 69-77 [in Russian].

EPICA community members (incl. Rybak, O.) One-to-one interhemispheric coupling of polar climate variability during the last glacial, Nature, 2006, 444, 195-198.

Rybak O.O., Rybak E.A. Spectral analysis of isotopic records in the ice cores and in the marine sediments, Data of Glaciological Studies, 2006, 101, 17-23 [in Russian].

Rybak O., Huybrechts P., Pattyn F., Steinhage D. Regional model of ice dynamics. Part 1. Model description, set-up of the numerical experiment and present-day dynamics of the ice flow in the surroundings of Kohnen station, Data of Glaciological Studies, 2007, 102, 3-11 [in Russian].

Rybak O., Huybrechts P., Pattyn F., Steinhage D. Regional model of ice dynamics. Part 2. Post-experimental data processing, Data of Glaciological Studies, 2007, 103, 3-10 [in Russian].

Rybak O., Huybrechts P. Lagrangian method of calculation of age and isotopic composition of ice in a three-dimentional model of the Antarctic ice sheet, Kriosfera Zemli (Cryosphere of the Earth), 2007, No. 11, 70-79 [in Russian].

Ruth U., Barnola J.-M., Beer J., Bigler M., Blunier T., Castellano E., Fischer H., Fundel F., Huybrechts P., Kaufmann P., Kipfstuhl S., Lambrecht A., Morganti A., Oerter H., Parrenin F.,  Rybak O., Severi, M., Udisti R., Wilhelms F., Wolff E. “EDML1”: A chronology for the EDML deep ice core from Dronning Maud Land, Antarctica, over the last 150000 years, Climate of the Past, 2007, 3, 475-484.

Huybrechts P., Rybak O., Pattyn F., Ruth U., Steinhage D. Ice thinning, upstream advection, and non-climatic biases of the upper 89% of the EDML ice core from a nested model of the Antarctic ice sheet, Climate of the Past, 2007, 3, 577-589.

Rybak O., Huybrechts P. Sensitivity of the EDML ice core chronology to geothermal heat flux, Data of Glaciological Studies, 2008, 105, 35-40.

Nemec J., Huybrechts P., Rybak O., Oerlemans J. Reconstruction of the surface mass balance of Morteratschgletscher since 1865, Annals of Glaciology, 2009, 50, 126-134.

Huybrechts P., Rybak O., Steinhage D., Pattyn F. Past and present accumulation rate reconstruction in the Eastern Dronning Maud Land, Antarctica, 2009, 51, 112-120.

Fürst J.J., Rybak O., Goelzer H., De Smedt B., de Groen P., Huybrechts  P. Improved convergence and stability properties in a three-dimensional higher-order ice sheet model, Geoscientific Model Development, 2011, 4, 1133–1149.

Rybak O.O., Huybrechts P. Mathematical modeling of ice flow in Dronning Maud Land, Antarctica within the frames of EPICA programme and ist applications in palaeoreconstructions of the Late Quarternary climate, Liod i Sneg (Ice and Snow), 2012, No. 3, 5-16 [in Russian].

Pattyn F., Schoof C., Perichon L., Hindmarsh R.C.A., Bueler E., de Fleurian B., Durand G., Gagliardini O., Gladstone R., Goldberg D., Gudmundsson G.H., Huybrechts P., Lee V., Nick, F. M., Payne A. J., Pollard D., Rybak O., Saito, F., Vieli, A. Results of the Marine Ice Sheet Model Intercomparison Project, MISMIP, The Cryosphere, 2012, 6, 573-588.

NEEM community members (incl. Rybak O.). Eemian interglacial reconstruction from a Greenland folded ice core, Nature, 2013, 493, 489–494.

Zekollari H., Huybrechts P., Fürst J.J., Rybak O., Eisen, O. Calibration of a higher-order 3-D ice flow model of the Morteratsch glacier complex, Engadin, Switzerland, Annals of Glaciology, 2013, 54, 343-351.

Rybak O.O., Fürst J.J., Huybrechts P. Mathematical modeling of ice flow in north-western Greenland and interpretation of deep ice drilling data at NEEM station, Liod i Sneg (Ice and Snow), 2013, No. 1, 16-25 [in Russian]

Rybak, O.O., Rybak, E.A. Description of the grounding line migration in a two-dimensional mathematical model of an ice sheet, Liod i Sneg (Ice and Snow), 2013, No. 3, 5-11 [in Russian]

Pattyn F., Perichon L., Durand G., Favier, L., Gagliardini O., Hindmarsh R.C.A., Zwinger T., Albrecht T., Cornford S., Docquie D., Fürst J.J., Goldberg D., Gudmundsson G.H., Humbert A., Hütten M., Huybrechts P., Jouvet G., Kleiner T., Larour E., Martin D., Morlighem M., Payne A.J., Pollard D., Rückamp M., Rybak O., Seroussi H., Thoma M., Wilkens N. Grounding-line migration in plan-view marine ice-sheet models: results of the ice2sea MISMIP3d intercomparison, Journal of Glaciology, 2013, 59, 410-422.

Rybak O.O., Huybrechts P. Greenland ice sheet at the peak of warming of the penultimate glaciation, Liod i Sneg. (‘Ice and Snow’), 2014, No. 2. 91-101. DOI:10.15356/2076-6734-2014-2-91-101.

Milne G., Carlson A., Dutton A., Long A., Rybak O. Estimating rates and sources of sea level change during past warm periods, Past Global Changes Magazine, 2014, 22, №1, 42.

Rybak O.O., Volodin E.M. Applying the Energy- and Balance Model for Incorporation of the Cryospheric Component into a Climate Model. Part I. Description of the Model and Computed Climatic Field of Surface Air Temperature and Precipitation Rate, Russian Meteorology and Hydrology, 2015, 40, No. 11, 731-740.

Rybak О.О., Rybak Е.А., Kutuzov S.S., Lavrentiev I.I., Morozova P.А. Calibration of a mathematical model of Marukh Glacier, Western Caucasus. Liod i Sneg ('Ice and Snow'), 2015, No. 2, 9-20. DOI:10.15356/2076-6734-2015-2-9-20 [in Russian]

Rybak O.O., Volodin E.M. Nevecherja A.P. Geothermal heat flux in Greenland and its influence on the model ice sheet topography, Liod i Sneg (Ice and Snow), 2015, No. 1, 19-34 [in Russian]

Rybak O.O., Volodin E.M. Nevecherja A.P., Morozova P.A. Applying the Energy- and Balance Model for Incorporation of the Cryospheric Component into a Climate Model. Part II. Modelled Mass Balance on the Greenland Ice sheet, Russian Meteorology and Hydrology, 2016, 41, No. 6, 379-387.

Rybak O.O., Volodin E.M. Nevecherja A.P., Morozova P.A. Calculation of mass discharge of the Greenland ice sheet in the Earth System Model. Liod i Sneg ('Ice and Snow'), 2016, No. 3, 293-308, DOI:10.15356/2076-6734-2016-3-293-308

Morozova P.A., Rybak O.O. Downscaling of the global climate model data for the mass balance calculation of mountain glaciers. Liod i Sneg ('Ice and Snow'), 2017, No. 4, 437-452, DOI: 10.15356/2076-6734-2017-4-437-452. [in Russian].

Rybak E.A., Rybak O.O. Regional effects of the global climate change; a case study: the Sochi National park area (Russia). Nature Conservation Research. Заповедная наука, 2017, 2. No. 3, 61-67

Nevecherja А.P., Rybak О.О. Parameterization of surface air temperature daily amplitudes in Greenland for application in mass balance calculations. Criosfera Zemli (‘Earth’s Cryosphere’), 2018, 22, No. 4. 31-41. DOI: 10.21782/KZ1560-7496-2018-4(31-41)

Rybak O.O., Rybak E.A. Model-based calculations of surface mass balance of mountain glaciers for the purpose of water consumption planning: focus on Djankuat Glacier (Central Caucasus) // IOP Conference Series: Earth and Environmental Science, 2018, 107. DOI: 10.1088/1755-1315/107/1/012041

Rybak O.O., Volodin E.M., Morozova P.A., Huybrechts P. State of the Greenland Ice Sheet in the Earth System Model, Russian Meteorology and Hydrology, 2018, 43, No. 2, 63-71. DOI: 10.3103/S1068373918020012

Rybak O.O., Volodin E.M., Morozova P.A. Reconstruction of Climate of the Eemian Interglacial Using an Earth System Model. Part 1. Set-up of Numerical Experiments and Model Fields of Surface Air Temperature and Precipitation Sums. Russian Meteorology and Hydrology, 2018, 43, No. 6, 357-365. DOI: 10.3103/S106837391806002X

Rybak O.O., Volodin E.M., Morozova P.A. Reconstruction of Climate of the Eemian Interglacial Using an Earth System Model. Part 2. The Response of the Greenland Ice Sheet to the Climate Change, Russian Meteorology and Hydrology, 2018, 43, No. 6, 366-371 DOI: 10.3103/S1068373918060031

Rybak O., Volodin E., Morozova P., Nevecherja A. Incorporation of ice sheet models into an Earth system model: Focus on methodology of coupling. Journal of Earth System Science, 2018, 127, Issue 2. https://doi.org/10.1007/s12040-018-0930-7 (i.f. 0.890, Web of Science Core Collection)

Rybak О.О., Rybak Е.А., Korneva I.А., Popovnin V.V. Mathematical modeling of Djankuat Glacier evolution in present day climate conditions. Sustainable development of Mountain territories, 2018, 10, No. 4, 533-543. [in Russian] (Scopus)

Korneva I.A., Rybak O.O., Volodin E.M. Applying the Energy- and Water Balance Model for Incorporation of the Cryospheric Component into a Climate Model. Part III. Modeling Mass Balance on the Surface of the Antarctic Ice Sheet. Russian Meteorology and Hydrology, 2019, 44, No. 2, 87-96. DOI: 10.3103/S1068373919020018

Shahgedanova M., Afzal M., Hagg W., Kapitsa V., Kasatkin N., Mayr E., Rybak O., Saidaliyeva Z., Severskiy I., Usmanova Z., Wade A., Yaitskaya N. Zhumabayev D. Emptying Water Towers? Impacts of Future Climate and Glacier Change on River Discharge in the Northern Tien Shan, Central Asia, Water, 2020, 12, 627, 1-32. doi:10.3390/w12030627