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Study of the decomposition of organic matter in nat-
ural water ecosystems and industrial processes such as
the processing of wood and wastewater treatment is of
current concern to the solution of environmental pro-
tection problems.

The basic hard-to-oxidize components of organic
matter in natural water are lignin and products of its
transformation, including humic and tannic substances,
phenols, quinones, and the like [1, 2]. The natural way
of their supply is the rain surface runoff bringing plant
remains and the products of their decomposition. A part
of these substances will later get decomposed in the
bulk water whereas the most stable of them will adsorb
on the suspended particles and settle down with the par-
ticles to bottom sediments, where the matter that did
not have enough time to get mineralized will be buried
under the sediment layer [3]. At the largest scale, this
process proceeds in the world ocean and makes a sig-
nificant contribution into the balance of carbon on the
planet [4]. To more accurately identify the flows of sub-
stances containing carbon, it is necessary to more thor-
oughly study the decomposition kinetics of organic
matter.

Industrial effluents are the alternative way of the
supply of hard-to-oxidize organic matter. This way is a
serious danger to the natural water environment. One of
the leading places regarding the volumes of consumed
water and wastewater effluents is taken by the pulp-
and-paper industry. Its effluents bring large amounts of
lignin and its derivatives to water ecosystems [5]. Lig-

nin is hard to remove during the wastewater treatment.
Most of it passes through the treatment equipment
without any change [6]. Consequently, it is important to
estimate the self-treatment potential of the natural
water exposed to such high technogenic loads [7]. The
study of the decomposition kinetics of lignin will allow
us to advance in this direction.

Lignin is a typical representative of a wide class of
technogenic and natural organic macromolecules. As it
is rather well studied, it can be considered as an exam-
ple to study the enzymatic decomposition of a stable
organic. Therefore, the modern concepts about the
structure and decomposition mechanisms of lignin will
be briefly discussed below in order to use this informa-
tion in formulating the ideas on which the model to be
developed will be based.

Lignin is a natural polymer, which is one of the main
components of wood. It is produced by the polyconden-
sation of phenylpropane monomer chains, which can
exist in different mesomer forms [8]. The variety of pri-
mary structures lead to heterogeneity and chaos at the
macromolecular level [9]. The topological structure of
lignin macromolecules is dendroidal (a tree graph) [10]
with rare intermolecular ties (rings) [11]. In wood, the
lignin exists as a gel-like boundless net. In water, it
exists as a sol with a wide spectrum of the sizes and
structures of macromolecular clusters [12–15]. In the
synthesis of lignin, the limiting factor in the formation
of clusters is diffusion. Because of the high reactivity of
phenoxyl radicals, the polymerization proceeds by the
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—Mechanisms of enzymatic decomposition of an organic substance consisting of fractal macromol-
ecules of different sizes are studied. A kinetic decomposition equation in which the reaction rate coefficient
depends on the characteristic of the fractal structure is formulated. The solution for a fraction of macromole-
cules of the same size and for a mixture of macromolecules of different sizes is analyzed. It is shown that the
decomposition kinetics depends on the fractal structure of the macromolecules and the type of their initial dis-
tribution by size. Conditions under which the decrease in the concentration of the organic substance obeys the
power law are found. The theoretical relations are used for analyzing the literature data on the decomposition
kinetics of organic matter in sea sediments in the time interval from several hours to about one million years. It
is shown that in this whole interval the concentration decreases with time according to the universal power law
with a 0.14 exponent. The kinetics of enzymatic decomposition of lignin (product of the natural decomposition
of plant remains or byproduct of wood processing) is also discussed. It is found that the exponent accounting
for the concentration decrease is equal to 0.4 to 0.5 for the decomposition of industrial lignin in bulk water and
1 to 2 for its decomposition in the water with bottom sediments.
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following patterns: random attachment of phenylpro-
pane chains to already existing growing macromole-
cules for low monomer concentrations and cluster–
cluster aggregation for high monomer concentrations
[16, 17]. It is assumed that in the synthesis of lignin the
reactivity of functional groups is independent of the
size and complexity of macromolecules (Flory’s princi-
ple [18]). It is well known that either growth mecha-
nism gives rise to fractal clusters, though their fractal
dimensions are different [19]. According to estimates
[20, 21], the fractal dimension of dioxane lignin and
lignosulfonate macromolecules is 2.44. According to
the modern physical theory, this value corresponds to
particle–cluster aggregation. Indeed, the numerical
simulation of aggregation in this case leads to a dimen-
sion of 2.5 whereas the cluster–cluster growth mecha-
nism produces less dense aggregates with a dimension
of 1.8 [19, 22].

In the nature, lignin is decomposed by specific
enzymes discharged by various fungi and bacteria [23–
27]. The lignin-decomposing group includes fungi of
white rot. They secrete lignolytic enzymes such as lac-
case, peroxidase, and tyrosinase, which can act outside
the cell, decomposing lignin macromolecules to dissol-
uble products that can diffuse through the cell mem-
brane inside the cell. Most enzymes discharged by
fungi produce a combined action: hydrolysis, oxida-
tion, tie cleavage, and detachment of functional groups.
The lignolytic ability of bacteria in most cases is much
lower than that for fungi [28].

The mechanisms of the catalytic action of enzymes
are well studied for low-molecular substrates [29–31].
In this case, a small substrate molecule adsorbs on the
active site of the molecule of an enzyme, is transformed
into a product molecule, and desorbs from the enzyme.
Remember that a large protein molecule folded into a
compact globule is the base of an enzyme.

A different situation is for lignin macromolecules,
which are much larger than the molecules of an
enzyme. In this case, the substrate molecule itself
adsorbs enzymes on its surface and does not let them
enter into its body because of the steric limitations. The
enzymes decompose the lignin macromolecule by
detaching small fragments from its surface. Later, these
fragments are involved in the metabolism of microor-
ganisms [28], where the regular mechanisms of enzy-
matic catalysis act. The detachment rate of fragments is
independent of the size and complexity of the macro-
molecules, which corresponds to the mentioned Flory
principle.

When the decomposition degree of lignin is deter-
mined by experiment, different parameters accounting
for the content of organic matter (chemical oxygen
demand, optical indices such as color index), which are
directly or indirectly related to the total content of
organic carbon concentrated in the lignin molecules [5,
6]. Therefore, when the decomposition kinetics of lig-
nin is theoretically described, it is necessary to ulti-

mately obtain the dependence of the concentration of
organic carbon on time.

In the present paper, we will develop a kinetic model
for the enzymatic decomposition of organic matter,
using lignin as an example and the well-known con-
cepts about its structure and decomposition mecha-
nisms.

DECOMPOSITION KINETICS

Summarizing the above, we can formulate the fol-
lowing main principles that will be used in simulating
the decomposition kinetics of lignin:

(1) Lignin is a mixture of macromolecules with a
wide spectrum of sizes and structures.

(2) The topological structure of lignin macromole-
cules possesses fractal properties.

(3) Lignin is decomposed with the help of enzymes
by detaching its small fragments from the surface of the
macromolecules. The detachment rate of one fragment
is independent of the size and complexity of the macro-
molecule.

These principles are true not only for lignin but also
for other organic substances in which the macromole-
cules are produced by the polycondensation of certain
structural units, such as humic substances, which are
much common in soil and water. That is why our theo-
retical consideration will be based on organic mole-
cules of the indicated class. In the present paper, we
will formulate the simplest (basic) model of the process
in which the fluctuations of the medium properties are
assumed to be very weak.

Consider the variation of the number of carbon
atoms in the molecules of an organic substance when
they are enzymatically decomposed. Simplifying the
actual situation, we assume that only the same frag-
ments are detached from the surface of macromolecules
(for example, phenylpropane monomers, which are the
structural units of lignin). In this case, the pattern of the
sequential detachment of fragments from the surface of
macromolecules can be written as
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with dimensions in the range (
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we come to the equation:
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complemented by the initial condition:
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Equation (3) can be solved by the method of charac-
teristics:

The first integrals are written as
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As the decomposition occurs on the surface of the
macromolecule, the rate of an elementary fragment-
detachment reaction is proportional to the probability at
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. This gives us the desired rela-
tion:
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Now return to formulas (5). Using the found relation
for 
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defined as compared to (5). Equations (7) and (8), and
initial condition (4) yield the following relations:
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Substituting expressions (7) and (8) for C1 and C2 in
the above relations, we obtain

(9)

(10)

When distributions (9) and (10) are known, we can
find the concentration of structural units in the mole-
cules that are not decomposed yet:

c = (11)

It is obvious that the concentration of organic carbon is
proportional to this quantity (more correctly, it is equal
to n1c, where n1 is the number of carbon atoms in one
structural unit). Consequently, the equations for the
concentration Ò to be derived below can be interpreted
as the equations for the concentration of organic carbon
when the parameters are appropriately renormalized.

DECOMPOSITION OF A UNIFORM FRACTION

Assume that the organic substance initially is repre-
sented by a uniform fraction made up of macromole-
cules of the same dimension n0 with concentration N0.
The corresponding initial distribution has the shape of
a delta function:

Using the delta-function property [32]:

where ϕ(n) is an arbitrary differentiable function and ni

are the roots of the equation ϕ(n) = 0, distribution (9)
can be written as
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Equations (13) and (14) can be used to obtain the
decomposition kinetics of the organic substance deter-
mined by the variation of the total content of organic
carbon. To this end, we find the derivative dc/dt and
exclude the time from the resulting expression. As a
result, we come to the kinetic equation

(15)

where kν = k1(n0/c0)ν – 1 = k1  is the resultant reac-

tion rate coefficient.
Equation (15) was derived earlier [33] using the

multifractional model in the limit of an infinite number
of fractions. The derivation proposed in the present
paper uses deeper physical principles underlying the
mechanism of the process.

In the enzymatic kinetics, there is an analog of
Eq. (15), Moser’s nonlinear equation [34]:

(16)

where k0 is the decomposition rate constant and K is the
half-saturation constant. The equation accounts for the
saturation effect at high substrate concentrations. In the
nature, the substrate concentration is far from satura-
tion: c � K. In this case, (16) can be reduced to (15).
The Moser equation was initially introduced as semi-
empirical. The derivation of Eq. (15) proposed in the
present paper can be regarded as the theoretical justifi-
cation of the nonlinear enzymatic kinetics.

In Eq. (15), the value of ν = 1 corresponds to the
first-order kinetics dc/dt = –k1c with a characteristic
decomposition time T = 1/k1.

For ν � 1, the characteristic time T and the exponent
ε are introduced using the relationships

(17)

The physical meaning of time T can vary depending on
whether T is less or greater than unity.

When ν < 1, the concentration of organic carbon
decreases by the law

In this case, T is the time of the complete decomposi-
tion of the organic substance.

When ν > 1, the time dependence of the concentra-
tion is written as

(18)

where the time T characterizes the duration of the initial
stage of the process rather than its whole time. When
t > T, the decomposition transits to a slow asymptotic
stage:
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which does not have a characteristic time scale and con-
tinues endlessly.

DECOMPOSITION OF A MIXTURE

Consider the decomposition kinetics of a mixture
with an arbitrary initial distribution of molecules by
size. We turn again to formula (11). Assume that ν = 1
and substitute distribution (10) into (11). Simple
manipulations give

where c0 =  by definition. This result coin-

cides with (14). Consequently, the value of ν = 1 pro-
vides the reaction first order no matter the initial distri-
bution is.

Now assume that ν � 1 and substitute (11) into (9).
A set of manipulations yields

(20)
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where zt = (|1 – ν|k1t)1/(1 – ν).

First consider the ν > 1 case. As t  ∞, (20) gives
the asymptotic equality:

It completely coincides with (19) if we remember that

N0 =  and the characteristic dimension n0

involved in formula (17) for the time T is equal to c0/N0
by definition.

A power-law asymptotic relationship is also possi-
ble for the ν < 1 case. In this case, the initial distribution
should have a rapidly descending power-law tail:
f0(n) ∼ n–λ as n  ∞, where λ > 2. Then, it follows
from (21) as t  ∞ that

(22)

The condition λ > 2 provides the existence of the zeroth
and first moments of the initial distribution; that is, the
boundness of molecule concentration N0 and organic
carbon concentration c0 in the initial mixture. The phys-
ical reasons for the appearance of the power-law tail of
the distribution will be considered later, when the
obtained results are discussed.
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If the initial distribution declines exponentially:
f0(n) ∼ exp(–n/n0), the concentration will decrease
according to the law:

where ε = 1/(1 – ν) > 1. This implies that it can decrease
slower (when t < T) or faster (when t > T) than the sim-
ple exponential function with ε = 1.

SPECTRUM OF REACTIVITIES

Consider the distribution of molecules over their
reactivities. By definition, the reactivity is the decom-
position rate constant (coefficient) k in the first-order
kinetic equation:  

where ck is the concentration of molecules with reactiv-
ity k. 

It follows from this equation that

where cok is the initial concentration.

For a continuous distribution of molecules by reac-
tivity, it is necessary to consider the density of the dis-
tribution by k, which will be denoted by g(k), instead of
the concentration. This function specifies the spectrum
of the reactivities of organic molecules undergoing
enzymatic decomposition. By definition, g(k)dk is the
concentration of organic carbon in the fraction of mol-
ecules with reactivities found in the interval (k, k + dk).
After the decomposition begins, the carbon concentra-
tion in this fraction at time t will be equal to g(k)e–ktdk

c zt/n0–( ) t/T( )ε–( ),exp∼exp∼

dck/dt kck,–=

ck cok l–kt⋅ ,=

and the total concentration of organic carbon in all frac-
tions will be written as

(23)

If the spectrum of the reactivities of molecules is
known, (23) can be used to calculate the time variation
of organic carbon. And vice versa, if the function c(t) is
known, the spectrum g(k) can be found. Note that to
solve the inverse problem, relation (23) can be regarded
as a Laplace transform in which g(k) is the original
function and c(t) is its Laplace transform [13]. Using
the inverse Laplace transform and the known Laplace
transform of some function, we can find this original
function. Specifically, when ν > 1, (18) yields the
gamma distribution

(24)

where Γ is the gamma function. Depending on the value
of parameter ν = 1 + ε–1, we obtain spectra of different
types (Fig. 1). When ν ≥ 2 (0 < ε ≤ 1), the spectrum
monotonically declines (singularity at zero is integra-
ble). When 1 < ν < 2 (ε > 1), the spectrum has a maxi-
mum at the point k = (ε – 1)/T.

The distribution of the type (24) has a natural inter-
pretation. In the region of high k (k > T–1), the behavior
of spectrum (24) is dictated by the exponential function
exp(–kT), which describes the decomposition of the
labile fraction during times of the same order of magni-
tude as T. The behavior of the spectrum in the region of
small k (k < T–1) is determined by the exponent kε – 1

describing the decomposition of stable fractions, which
requires a higher time for a lower value of k.

When ν = 1, the spectrum is degenerated to g(k) =
(Ò0/k1)δ(k – k1) (that is, all molecules have the same
reactivity k = k1).

ANALYSIS OF EXPERIMENTAL DATA 
AND DISCUSSION

In testing the adequacy of the model, of high impor-
tance are numerous Middelburg’s data [35] on the
decomposition of organic matter in sea bottom sedi-
ments and laboratory experiments, which were gath-
ered from various literature sources. These data cover a
uniquely wide time interval: from several hours to
about one million years (Fig. 2). In the cited paper, to
describe the data, the author proposed a kinetic model
of the quasi-first order dc/dt = –k(t)c in which the dis-
tinctive feature is the dependence of the decomposition
rate “constant” (coefficient) on time. The function
k(t) ∼ t–a was used. The best agreement was achieved
when a = 0.95 ± 0.01. Line 1 in Fig. 2 presents the curve
calculated by this model.

c t( ) g k( )e kt– k.d

0

∞

∫=

g k( )
c0T
Γ ε( )
----------- kT( )ε 1– e kT– ,=
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0 2 4 6
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kT

1

2
3

4

Fig. 1. Spectra of reactivities for ε = (1) 0.14, (2) 1.2; (3) 2,
(4) 3.



THEORETICAL FOUNDATIONS OF CHEMICAL ENGINEERING      Vol. 41      No. 6      2007

KINETICS OF THE ENZYMATIC DECOMPOSITION OF MACROMOLECULES 873

Let us estimate the adequacy of the models devel-
oped in the present paper. According to them, the
decomposition of organic matter can proceed by the
power law c ∼ t–b. The best agreement with measured
data is achieved when b = 0.14 (Fig. 2, line 2). It is seen
that both approaches, empirical (quasi-first order kinet-
ics) and theoretical (power law), are equally successful
in describing the measured data. At the same time, the
advantage of the latter is the fact that it is physically
grounded.

It should be noted that in one specific case the quasi-
first-order kinetics also yields the power-law depen-
dence on time. This takes place when k(t) ∼ t–1 (that is,
when a = 1), which is rather close to the found value of
a = 0.95. Indeed, Middelburg [35] showed that the sep-
aration of the data of laboratory experiments, as the
most accurate ones, from the whole set of data and their
processing give a = 1.00 ± 0.06; that is, the exact value
at which both approaches coincide.

Let us turn to estimating the parameters of decom-
position kinetics at b = 0.14. Assume that ν > 1. Then,
ε = b and ν = 1 + ε–1 = 8.1. However, this contradicts the
theoretical restriction from above: ν ≤ 3. Consequently,
it should be ν < 1. In this case, decomposition law (22)
is true and can be used to yield:

(25)

As ν < 1 and b > 0, we have λ > 2. For the chosen value
of b and the theoretical restriction from below ν ≥ 2/3,
the parameter λ can vary in a very narrow interval: 2 <
λ < 2.05, which places stringent restrictions on the
asymptotic behavior of the initial distribution of mole-
cules by size.

Consider the reasons that can lead to ν < 1. First of
all, it should be noted that the fractal dimension of a
surface depends on the scale used to measure this sur-
face. The larger is the scale, the higher is the extent to
which the nonuniformity of the surface is leveled off. In
this case, its fractal dimension D approaches 2. For
enzymatic decomposition, the scale unit is represented
by the enzyme molecule, which is rather large as com-
pared to the size of nonuniformities on the surface of
the organic macromolecule. Consequently, it should be
expected that the fractal dimension of the macromole-
cule surface measured by this scale will be rather close
to 2. At the same time, the fractal dimension d of the
volume of an organic molecule will depend on the mol-
ecule formation mechanism: d < 2 for the cluster–clus-
ter aggregation and d > 2 for the particle–cluster aggre-
gation. This implies the following conclusion about the
fractal index ν of the molecule: ν > 1 for the cluster–
cluster aggregation and ν < 1 or close to 1 for the parti-
cle–cluster aggregation. It is also important to take into
account the possibility of an internal rearrangement in
a macromolecule that may be caused by the re-orienta-
tion of the structural units and formation of new ties.
During the process of such “ripening”, the structure of
the macromolecule becomes still more compact, which

λ 2 b 1 ν–( ).+=

can affect its fractal dimension d: it will increase, com-
ing closer to the dimension of the physical space, which
is equal to 3. It follows from the above that in the sys-
tem that has been ripening long enough (for example,
the organic matter in the bulk water and bottom sedi-
ments in the world ocean), the fractal index of organic
macromolecules will tend to ν = 2/3.

We will now find out what reason is responsible for
the power-law tail in the initial distribution of organic
macromolecules by size before the beginning of enzy-
matic decomposition. Macromolecules in water are
synthesized by the coagulation mechanism and the
macromolecules themselves play the role of coagulat-
ing aggregates. The transformation kinetics of the dis-
tribution of aggregates by size is described by the
Smoluchowski coagulation equation [36]:

(26)

where β(n, n') is the frequency of effective (leading to
coagulation) collisions of aggregates with dimensions n
and n'.

It is shown [37] that for the gradient mechanism of
collisions between aggregates with radically different
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0

∞

∫
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logt
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Fig. 2. Decomposition rate of organic matter in sea sedi-
ments as a function of time (adopted from the study [35]
with some changes). The time on both axes is expressed in
years: 1, quasi-first-order model; 2, power-law function c ∼
t–b with b = 0.14.
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dimensions (n � n'), there is a function β(n, n') ≈ β0n3/d,
where β0 is the parameter depending on the flow gradi-
ent and characteristics of structural units, which pro-
vides the rapid increase of the frequency of effective
collisions as the aggregates build up. The larger is the
aggregate, the higher is the rate at which the aggregate
absorbs monomers and small aggregates, decreasing
the concentration of these particles in the system. In a
finite time, there will be no aggregates with a dimen-
sion less than n in the system. This was demonstrated
by the numerical experiments with a disperse system in
which the coagulation and fragmentation of aggregates
proceed [38, 39]. In the case under consideration, there
is no fragmentation because the ties between structural
units in a macromolecule are rather strong [40] (they
are stronger than the tensile stresses in the shear flow of
a liquid). As a result, the absorption of aggregates with
dimensions less than n will be completed in a far
shorter time. After that, new aggregates with dimen-
sions less than n will stop to emerge and the first term
in Eq. (26) will reduce to zero. The coagulation will
continue due to the collision of aggregates with dimen-
sions starting with n and larger. This gives rise to far
larger aggregates and the number of aggregates with
dimension n will decrease at a rate determined by the
last term in (26). As the forming distribution will slowly
decline with increasing dimension, the largest contribu-
tion into the integral will be made by aggregates with
n' � n, for which we can use the approximation β(n, n') ≈
β0n'3/d. Consequently, some time (depending on n) after
the coagulation beginning, Eq. (26) takes the form

(27)

After the initial stage is coover the coagulation
kinetics passes to a self-similar mode [36], in which the
size distribution does not have a characteristic scale.
This scale could emerge under the action of flow

f n( )∂
t∂

-------------- β0 f n( ) n '3/d f n '( ) n '.d

0

∞

∫–=

stresses if they are strong enough to detach fragments
from the surface of aggregates. In this case, the increase
of shear stresses with growing size of aggregates will
limit their size by some equilibrium value [37]. How-
ever, it does not happen because of the strong ties
between the structural units constituting the macromol-
ecule. The absence of a characteristic scale manifests
itself as scale invariance, which means that there is a
similarity relationship f(n/s) = sλf(n) for an arbitrary
scale s. This immediately results in a power-law distri-
bution f(n) ∼ n–λ. For the integral in (27) to exist, the
decline exponent λ should satisfy the condition 3/d –
λ < –1, from which we obtain:

(28)

Since d ≤ 3, λ > 2, which well agrees with relation (25).
If we assume that b and D are known, (25) and (28) can
be used to obtain a constraint on the fractal dimension
of aggregates:

(29)

The above analysis shows that the causes of the
emergence of the power-law tail of the distribution in
the coagulation formation of macromolecules are the
rapid growth of the frequency of effective collisions
with increasing size of aggregates and the absence of
restrictions on the growth of the macromolecules.

Let us use the obtained findings to analyze the data
on enzymatic decomposition of lignin [6]. This paper
studied the decomposition in bulk water and in a water–
bottom-sediment combined system. A part of the exper-
iments was based on the water from the lake Baikal.
The lignin concentration was determined by indirect
indices, such as the color index and chemical oxygen
demand. If the lignin is assumed to be represented by a
uniform fraction, the decomposition kinetics will be
described by formula (18) (with ν > 1). The results cal-
culated by this formula (Fig. 3) satisfactory agree with
the experimental data [33]. The parameters of the
kinetic curves found by the method of least squares are
summarized in the table:

Parameters of relationship (18) for the curves plot-
ted in Fig. 3

If there is initially a mixture of lignin macromole-
cules distributed by size by the power law, these data
should be processed in a different way. As was shown
above, the decomposition kinetics at its asymptotic
stage should also follow the power law c ∼ t–b [see (22)].
According to the literature data [33], the exponent b,
denoted by ε in the paper [33], depends on the process
conditions. For example, it is equal to b = 0.4 to 0.5 for
the decomposition in a bulk water and b = 1 to 2 for the
decomposition in a water–bottom-sediment combined
system. Assuming that D = 2.2 in (25) and using the
averaged values of b, 0.45 and 1.5, we find that  =
2.75,  = 2.09 for the first case and  = 2.52,  = 2.19

λ 1 3/d .+>

d d
3 bD+
1 b+

----------------.≡>

d
λ d λ

Parameter

Measured index

Color index COD

Water
Water–bot-
tom sedi-

ment
Water

Water–bot-
tom sedi-

ment

c0 500 deg 450 deg 320 mgO/l 334 mgO/l

T, day 62.4 154 99.9 269

ε 0.545 1.34 0.426 2.10

σ, % 2.3 2.9 3.8 4.7

COD, chemical oxygen demand; σ, standard deviation.
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for the second case, where  = 1 +3/ . If according to
(29) the fractal dimension is taken a little larger than its
lower boundary, specifically d = 2.80 and 2.55, we
obtain the values of decline exponent λ = 2.1 and 2.2,
respectively.

The conclusion about the power-law distribution by
size was referred to the distribution of organic macro-
molecules f0(n) formed in water as a result of coagula-
tion. After the enzymatic decomposition begins, the
distribution of macromolecules is transformed accord-
ing to formulas (9) and (10). For ν < 1, we obtain:

(30)

At a fixed moment of time, distribution (30) for high
values of n retains the power-law tail left from the ini-
tial distribution:

f(n) ∼ n–λ when n1 – ν � (1 – ν)k1t.

When a rather long time has been passed since the
process beginning, the number of aggregates with given
dimension n decreases with time by the power law:

 

Consequently, the power-law asymptotic behavior of
the distribution of organic molecules is observed for the
enzymatic decomposition as well.

CONCLUSIONS

The mechanisms of the enzymatic decomposition of
an organic substance consisting of fractal macromole-
cules of different sizes considered in the present paper
made it possible to formulate and solve the kinetic
equation of the decomposition and analyze the obtained
solutions for two cases, a uniform fraction of macro-
molecules and a mixture of macromolecules of differ-
ent sizes.

It was shown that, in the case of a uniform fraction
the decomposition can be described by a nonlinear
kinetic equation the order of which is equal to the frac-
tal index of the macromolecules (ratio of the fractal
dimensions of their surface and volume). The consider-
ation of the reactivity of macromolecules, defined as
the rate constant for their decomposition in the kinetic
equation of the first order showed that in the decompo-
sition of a uniform fraction the spectrum of the reactiv-
ities of macromolecules is given by the gamma-distri-
bution in which the power-law part describes the num-
ber of slowly decomposing structures, which are stable
with respect to enzymatic decomposition, and the expo-
nential function part accounts for the number of labile
(unstable) fractions.

For the decomposition of organic matter represented
by a mixture of macromolecules of different sizes, the

λ d

f n( ) n λ– 1
1 ν–( )k1t

n1 ν–
------------------------+⎝ ⎠

⎛ ⎞
λ ν–
1 ν–
------------–

.∼

f n( ) n ν– 1 ν–( )k1t[ ] λ ν–( )/ 1 ν–( )–∼

when 1 ν–( )k1t � n1 ν– .

decomposition kinetics is determined not only by the
fractal structure of the macromolecules but also by the
type of their initial distribution by sizes. The latter is
formed in water under the action of coagulation mech-
anisms, which under certain conditions, such as the
rapid growth of the frequency of effective collisions
with increasing sizes without any restrictions on the
growth of macromolecules, accounts for the power-law
tail of the distribution with a decline exponent greater
than 2.
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Fig. 3. Decomposition kinetics of lignin determined by (a,
b) color index and (c, d) COD in (a, c) homogeneous aque-
ous medium and (b, d) water–bottom-sediment inhomoge-
neous system.
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The distribution developed from the initial power-
law distribution due to the decomposition retains the
same power-law asymptotic behavior at every moment
of time. However, the zone of its action is shifted with
time to far larger macromolecules. The number of mac-
romolecules with a given dimension decreases with
time by the power law. Under these conditions, the
decrease of the concentration of organic matter also fol-
lows the power law, in which the exponent depends on
the decline exponent in the initial distribution and the
fractal index of macromolecules.

Analysis of the literature data on the decomposition
kinetics of organic matter in sea bottom sediments and
laboratory experiments, which cover a vastly wide time
interval from several hours to one million years,
showed that the concentration decreases with time by
the universal power law with an exponent equal to 0.14.
Analysis of the kinetics of enzymatic decomposition of
lignin, which is available in the wastewaters discharged
by the pulp-and-paper industry, showed that the expo-
nent in this case is equal to 0.4 to 0.5 for the decompo-
sition in a bulk water and 1 to 2 for the decomposition
in water with bottom sediments.
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NOTATION

a—exponent in the relationship between the decom-
position rate coefficient (constant) and time for the
model of quasi-first-order kinetics;

b—exponent in the relationship between the con-
centration and time for the decomposition of a mixture;

C1, C2—additive constants;
c—concentration of organic carbon;
c0—initial concentration of organic carbon;
D—fractal dimension of the surface of a macromol-

ecule;
d—fractal dimension of the volume of a macromol-

ecule;
f(n)—macromolecules size distribution density ;
f0(n)—initial distribution by size.
g(k)—spectrum of the reactivities of macromole-

cules;
k—reactivity of a macromolecule;
kn—rate constant for the enzymatic decomposition

of a macromolecule of dimension n;
N0—initial concentration of the macromolecules of

an organic substance;
Nn—concentration of macromolecules of dimension

n;

n—macromolecule dimension defined as the num-
ber of carbon atoms in this molecule;

n0—characteristic dimension of macromolecules
before the beginning of decomposition;

R—macromolecule radius;
S—surface area of a macromolecule;
T—characteristic decomposition time of organic

matter;
t—time;
V—macromolecule volume;
ε—exponent in the relation between the concentra-

tion and time for the decomposition of a uniform frac-
tion;

λ—decline exponent for the tail part of the initial
distribution f0(n);

ν—fractal index of a macromolecule, equal to the
ratio of the fractal dimensions of its surface and vol-
ume.

REFERENCES
1. Aleksandrova, L.N., Organicheskoe veshchestvo pochvy

i protsessy ego transformatsii (Soil Organic Matter and
Its Transformation Processes), Leningrad: Nauka, 1980.

2. Orlov, D.S., Gumusovye kisloty pochv i obshchaya teor-
iya gumifikatsii (Soil Humic Acids and the General The-
ory of Humification), Moscow: Mosk. Gos. Univ., 1990.

3. Logan, B.E. and Wilkinson, D.B., Fractal Geometry of
Marine Snow and Other Biological Aggregates, Limnol.
Oceanogr., 1990, vol. 35, no. 1, p. 130.

4. Romankevich, E.A., Geokhimiya organicheskogo vesh-
chestva v okeane (Geochemistry of Organic Matter in
Ocean), Moscow: Nauka, 1977.

5. Timofeeva, S.S. and Beim, A.M., Regularities of Eco-
logical Transformation of Chlorlignins in Natural
Waters, Vodn. Resur., 1996, vol. 23, no. 4, p. 467 [Water
Resour. (Engl. Transl.), vol. 23, no. 4, p. 435].

6. Timofeeva, S.S. and Beim, A.M., Transformation Regu-
larities of Lignin-Containing Substances in Water Reser-
voirs of Eastern Siberia, Vodn. Resur., 1990, no. 2, p. 115.

7. Ostroumov, S.A., On the Biotic Self-Purification of
Aquatic Ecosystems: Elements of the Theory, Dokl.
Akad. Nauk, Ser. Biol. Nauki, 2004, vol. 396, no. 1,
p. 136 [Dokl., Ser. Biol. Sci. (Engl. Transl.), vol. 396,
no. 1, p. 206].

8. Szabo, A. and Goring, D.A.I., Degradation of a Polymer
Gel: Application To Lignification of Spruce Wood, Tappi
J., 1968, vol. 51, no. 10, p. 440.

9. Karmanov, A.P. and Monakov, Yu.B., Formation of Spa-
tially Periodic Structures in the Biosynthesis of Dehy-
dropolymers, Khim. Drev., 1994, no. 1, p. 62.

10. Gravitis, Ya.A. and Ozol’-Kalnin, V.G., Structure of Lig-
nin as Polymer: 2. Structure and Formation of Lignin in
Terms of the Theory of Branched Processes, Khim.
Drev., 1977, no. 3.

11. Ozol’-Kalnin, V.G., Kokorevich, A.G., and Gravitis,
Ya.A., Simulation of Bounded Grid Clusters: Estimation
of Reactivity, Spatial Geometry, and Topological Struc-



THEORETICAL FOUNDATIONS OF CHEMICAL ENGINEERING      Vol. 41      No. 6      2007

KINETICS OF THE ENZYMATIC DECOMPOSITION OF MACROMOLECULES 877

ture, Vysokomol. Soedin, Ser. A, 1987, vol. 29, no. 5,
p. 964.

12. Pen, V.R., Pen, R.Z., and Taraban’ko, V.E., Delignifica-
tion Kinetics of Wood: 7. Simulation of Lignin Decom-
position by the Monte Carlo Method, Khim. Rastit.
Syr’ya, 1998, no. 3, p. 107.

13. Pen, R.Z. and Pen, V.R., Kinetika delignifikatsii dreves-
iny (Delignification Kinetics of Wood), Krasnoyarsk:
SibGTU, 1998.

14. Karmanov, A.P., Lignin: Structural Organization and
Self-Organization, Khim. Rastit. Syr’ya, 1999, no. 1, p. 65.

15. Repnikova, E.A., Aleshina, L.A., Glazkova, S.V., and
Fofanov, A.D., Study of the Structure of Lignins, Khim.
Rastit. Syr’ya, 2004, no. 1, p. 5.

16. Freudenberg, K. and Neish, A.C., Constitution and Bio-
synthesis of Lignin, Berlin, 1998.

17. Lai Yaun-Zong and Sarkanen K.V., Structural variation
in dehydrogenation polymers of coniferyl alcohol, Cel-
lul. Chem. Technol., 1975. V. 9. ? 3. P. 239.

18. Flory, P.J., Principles of Polymer Chemistry, Ithaca,
N.Y.: Cornell Univ. Press, 1953.

19. Roldugin, V.I., Fractal Structures in Disperse Systems,
Usp. Khim., 2003, vol. 72, no. 10, p. 931.

20. Kokorevich, A.G., Gravitis, Ya.A., and Ozol’-Kalnin,
V.G., Development of the Scaling Approach in Studying
the Permolecular Structure of Lignin, Khim. Drev., 1989,
no. 1, p. 3.

21. Afanas’ev, N.I., Structure of Macromolecules in Solu-
tions, Interfaces, and Surfactant Properties of Lignosul-
fates, Extended Abstract of Doctoral (Chem.) Disserta-
tion, Leningrad, 1975.

22. Smirnov, B.M., Fizika fraktal’nykh klasterov (Physics of
Fractal Clusters), Moscow: Nauka, 1991.

23. Flaig, W., Effects of Microorganisms in the Transforma-
tion of Lignin to Humic Substances, Geohim. Cosmo-
chim. Acta, 1964, vol. 28, p. 1523.

24. Bogomolov, B.D., Khimiya drevesiny i osnovy khimii
vysokomolekulyarnykh soedinenii (Chemistry of Wood
and the Principles of Macromolecular Chemistry), Mos-
cow, 1973.

25. Grushnikov, O.P. and Elkin, V.V., Dostizheniya i prob-
lemy khimii lignina (Achievements and Problems of the
Chemistry of Lignin), Moscow: Nauka, 1973.

26. Kononov, G.N., Khimiya drevesiny i ee osnovnykh
komponentov (Chemistry of Wood and Its Basic Compo-
nents), Moscow: Lesnaya Promyshlennost, 1999.

27. Gubernatorova, T.N., Bio-Ecology: Routes and Main
Stages of Enzymatic Decomposition of Lignins in Water,
Inzh. Ekol., 2006, no. 6, p. 32.

28. Fengel’, D. and Vegener, G., Drevesina: khimiya, ul’tras-
truktura, reaktsii (Wood: Chemistry, Ultrastructure,
Reactions), Moscow: Lesnaya prom-st', 1988.

29. Yakovlev, V.A., Kinetika fermentativnogo kataliza
(Kinetics of Enzymatic Catalysis), Moscow: Nauka,
1965.

30. Vol’kenshtein, M.V., Fizika fermentov (Physics of
Enzymes), Moscow: Nauka, 1967.

31. Romanovskii, Yu.M., Stepanova, N.V., and Chernavskii,
D.S., Matematicheskoe modelirovanie v biofizike (Math-
ematical Simulation in Biophysics), Moscow: Izhevsk.

32. Landau, L.D. and Lifshits, E.M., Kvantovaya mekhanika
(Quantum Mechanics), Moscow: Nauka, 1963.

33. Dolgonosov, B.M. and Gubernatorova, T.N., A Nonlin-
ear Model of Contaminant Transformations in an
Aquatic Environment, Vodn. Resur., 2005, vol. 32, no. 3,
p. 322 [Water Resour. (Engl. Transl.), vol. 32, no. 3,
p. 291].

34. Moser, A., Kinetics of Batch Fermentations, in Biotech-
nology: Bioprocesses, Weinheim: VCH, 1985, vol. 2,
p. 243.

35. Middelburg, J.J., A Simple Rate Model for Organic Mat-
ter Decomposition in Marine Sediments, Geochim. Cos-
mochim. Acta, 1989, vol. 53, no. 7, p. 1577.

36. Voloshchuk, V.M., Kineticheskaya Teoriya Koagulyatsii
(Kinetic Theory of Coagulation), Leningrad: Gidrome-
teoizdat, 1984.

37. Dolgonosov, B.M., Coagulation-Fragmentation Kinet-
ics: Equilibrium Weight Distribution of Aggregates in
Flowing Suspensions, Teor. Osn. Khim. Tekhnol., 2001,
vol. 35, no. 5, p. 465 [Theor. Found. Chem. Eng. (Engl.
Transl.), vol. 35, no. 5, p. 440].

38. Dolgonosov, B.M., Evolution of the Size Spectrum of
Aggregates in the Disperse System with Reversible
Coagulation, Kolloidn. Zh., 2002, vol. 64, no. 3, p. 325
[Colloid J. (Engl. Transl.), vol. 64, no. 3, p. 292].

39. Dolgonosov, B.M., Coagulation-Fragmentation Kinet-
ics: Equilibrium Weight Distribution of Aggregates in
Flowing Suspensions, Teor. Osn. Khim. Tekhnol., 2002,
vol. 36, no. 6, p. 592 [Theor. Found. Chem. Eng. (Engl.
Transl.), vol. 36, no. 6, p. 539].

40. Brauns, F.E. and Brauns, D.A., Chemistry of Lignin,
New York: Academic, 1952.



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (None)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (ISO Coated)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.3
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Perceptual
  /DetectBlends true
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /SyntheticBoldness 1.00
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 524288
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveEPSInfo true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 150
  /ColorImageDepth -1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 150
  /GrayImageDepth -1
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputCondition ()
  /PDFXRegistryName (http://www.color.org?)
  /PDFXTrapped /False

  /Description <<
    /ENU <>
    /DEU <>
  >>
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [2834.646 2834.646]
>> setpagedevice


