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The influence of an isolated submerged obstacle on the dynamics of a material particle is
studied within the limits of a barotropic, quasi-geostrophic model of oceanic f-plane
flow, for cases in which the incident flow has both steady and tidal components of
velocity. Two kinds of motion are shown to occur, namely (i) the particle performs
quasi-periodic oscillations in the vicinity of the obstacle or (ii) the particle acquires an
infinite character (i.e., the particle leaving the vicinity of the obstacle is irrevocably
advected downstream by the background flow). Sufficient conditions are obtained for the
existence of both classes of motion. Conditions for domain alternation of the finite and
infinite solutions have been derived numerically for different external parameters (e.g.,
the kinematic characteristics of the flow field and the height of topography). Using the
Contour Dynamics Method, results are presented to show how the predicted motions of
individual particles can be extended to predict the behaviour of finite water volumes in
general and particle admixture patches in particular.
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1. INTRODUCTION

Though a large number of investigations have dealt with the modelling
of the influence of bottom relief on steady oceanic currents (see the
reviews by Kozlov, 1983; Zyryanov, 1985, 1995, Roden, 1987,
Thompson, 1990 and Baines, 1993), studies examining the effects of
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submarine topographic features are comparatively rare for cases in
which the incident currents vary periodically with time. Of these,
Verron (1986) has presented the results of numerical modelling
investigations on the formation and drift of topographically-trapped
and advected vortices in the vicinity of a small topographic feature
exposed to a unidirectional, time-varying incident flow u(¢) of the form
u=U(l—coswt). Likewise, the dynamics of a weakly-periodic, zonal
flow u=U(l—ecoswt), ek1 over an infinite crest has been discussed
by Kozlov and Sokolovskiy (1981). Chen and Beardsley (1995); Chen
et al. (1995); Beckmann and Haidvogel (1993) carried out numerical
modelling studies to determine the behaviour of a purely oscillating
flow u = U cos wt when interacting with an isolated obstacle of finite
height and, more recently, Goldner and Chapman (1997) have studied
the induced motions caused by interactions of steady and tidal
background currents with a tall seamount. Laboratory studies (Boyer
et al., 1991; Zhang and Boyer, 1993; Perera et al., 1995) of topographic
interactions of oscillating flows are related closely with the above
investigations.

Most previous studies have examined either pulsating or purely
reversing flows, with oscillating currents having been poorly investi-
gated thus far; in particular, currents changing their direction and
developing against the background of a constant component require
further study. As experimental observations show, currents of this type
are often the most characteristic for the ocean. For example, current
observations (Eriksen, 1991) in the area of Fieberling guyot show that
between 39% and 48% of total kinetic energy is contained in the tidal
movements. Brink (1995) has demonstrated that for Fieberling, the
tidal forcing of the flow can lead to significant selective amplification of
tidal constituents of the current record. Likewise, detailed investiga-
tions by Smith et al. (1989) have shown in the framework of the TOPO
programme that daily oscillations of velocity with amplitudes of
0.2-0.4ms™ ! are found on background constant flows with velocities
of about 0.1ms~'. Other field measurements (Gibson etal., 1994;
Roden, 1991) give velocities of the tidal and constant components of
the flow of 0.48ms™' and 0.01ms™' respectively, while analyses of
current measurements in the Atlantic ocean in the area of the Ampere
seamount (Monin et al., 1989) show the oscillating component to be
approximately three times greater than the background.
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It is known that oceanic regions with pronounced topographic
irregularities may coincide with areas of high concentrations of fish
and other marine species, as a result of the heightened presence there
of mineral salts, phyto- and zoo-plankton and other elements of the
trophic chain. These elements can be regarded as particles or patches
of passive admixture, their dynamics being amenable to study, as here,
with Lagrangian methods. A similar approach applied to the study of
the distribution of nutrient substances over a chain of underwater
banks in the region of Vancouver Island was used in Foreman et al.
(1992). Tracer methods have also been widely used for studying
chaotic advection (see for example, Ziemniak et al., 1994) and in tidal
flows (Beerens et al., 1994).

The present study is based upon the above-mentioned Lagrangian
approach and considers the influence in a rotating fluid of an isolated
underwater obstacle of small height on.the current flowing around it.
In general, this current has a periodic component with a non-
degenerated ellipse oriented arbitrarily with respect to the direction of
the general stationary transport. Attention is directed specifically on
determining approximate criteria for the existence of quasi-periodic
regimes of flow.

2. FORMULATION OF THE PROBLEM

The study is limited to cases in which the quasi-geostrophic
approximation is valid in a uniform, f-plane rotating ocean with a
topographic disturbance siginificantly smaller than the mean depth H.
Sufficiently far from the topographic feature of height A, the
components (#, ¥) of the current velocity along axes of a rectangular
coordinate system (x,y,z) rotating uniformly with angular velocity
(0,0, f/2) are specified by the relations

i = Uy + U coswt, (1)

v=Vy+ Vsinwt, (2)

where U, and V, are the x- and y-components of the constant
background velocity and U and V are corresponding amplitudes of
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periodic perturbations with frequency w. For oceanic cases, using a
typical velocity scale of ¥*=0.2ms™' and with f=1.4x10"*s™" as
Coriolis parameter and T=12 hour=4.32x10*s as time, then the
horizontal scale L* of the topographic disturbance will be L* ~ 8.6 km
and the non-dimensional wave frequency corresponding to the daily
tidal oscillations, w = 7. In consequence, the value of the Rossby
number Ro=V*/fL*=0(107"), confirming that the quasi-geostrophic
approximation is valid for such cases. The possibility of applying the
quasi-geostrophic approximation to tidal, oceanic flows has been
substantiated rigorously in Zyryanov (1995).

A tidal current of the form (1)—(2) flows around a submerged
topographic feature of amplitude A, the shape of which is taken to be
(in non-dimensional coordinates) an upright circular cylinder of unit
radius. Then, the resulting background current velocity components
(u,v) that satisfy the condition of potential vorticity conservation
will be determined by the superposition of this current and the
topographic vortex (Kozlov, 1983; Zyryanov, 1985, 1995) induced by
the disturbance

u=i+(o/2)y G, o)
V=7 (/2 G0) @
60)={ ). 1SV rP=ven (5

where o=h/H(Ro)=0(1) is the topographic parameter (taking
positive and negative values for elevated or depressed topographic
features respectively). For the typical oceanic values cited above and
with H ~ 4 km, a value of ¢ = 1 corresponds to a positive topographic
feature of height 640m. The relation c=0(1) sets a formal
“smallness” criterion for bottom disturbances, namely & ~ H(Ro).

The Egs. (3)—(4) can be written in the form of ordinary differential
equations for the movement of a material point as

dx/dt= U+ U cos wt+ (c/2) y G(r), (6)

dy/dt = Vy+ V sin wt — (6/2) xG(r), (7
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t=1; Xx=2X0; Y=Jo- (8)

It is possible to consider the system (6)—(8) as a mathematical model
for the dynamics of a point vortex having arbitrary intensity, because
the self-influence in case of a single discrete vortex is absent.

It is of interest to consider the simplest particular case, where there
is no topographic disturbance (o = 0). The system (6)—(8) gives
solutions

x=x9+ Upt+ (U/w) sin wt, 9)

y=yo+Vot+ (V/w) (1 — cos wt), (10)

showing that a fluid particle performing loop-shaped oscillations is
drifted in the direction of the mean flow. At Uy= V=0 every particle
moves along the elliptic trajectory

[(x = x0)/(U/w)]? +{[(y = yo) = (V) V[l =1 (11)

around the individual centre [xq, (yo+ (V/w))] in the cyclonic (anti-
cyclonic) direction at UV > 0, (UV < 0).

In the general case, interest will be directed at fluid particle
movements described by the flow of the form (1)—(2) that is evolving
against the background of an axially-symmetric gyre induced by the
topography. The direction of the movement is anticyclonic over a
positive obstacle and cyclonic over a depression.

2.1. Topological Peculiarities of the Background Field

The external field (3)—(4) can have two singular points where the
velocity vector is zero-the elliptic point (x,, y.) within the limits of the
unit circle and the hyperbolic point (x,, y,) outside this circle-with
coordinates

(Xe, ye) = (2 V/O', —2u/a),

(%, i) = lov/2 (u + V), (=0 u) [2(® + ). -

In the second singular point there occurs the self-crossing of the
separatrix surrounding the area of topographic trapping. According to
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(1)-(2), coordinates x,, j, y.,, are explicit functions of time. It follows
from (12) that (i) if

U+ VEi+[max(|U|, |V +2[(UU) + (V Vo))]? < 02/4
(13)

then singular points exist for any ¢, and (ii) if

Ui+ Vi+min (U], [ V)P =2((U Vo) + (¥ Vo)) ? > 02 /4
(14)

there are no such points. Denoting the topographic parameter limit
values (i.e., those that satisfy the equality in (13) and (14)) as omax and
omin at fixed kinematic characteristics of the background field, the
velocity vector at

Iamin|<|0|<|0max| (15)

will clearly become zero in points (x, 4, y. ») that appear only in some
time interval of every tidal period.

Figure 1 shows examples of relations x, 4(1), y. x(f) and ye u(xe, 1),
for cases (13) and (15). For the selected values of velocity, oax = 2.97,
Omin = 0.36. Clearly, (i) condition (13) is fulfilled in case (a) and (ii)
condition (195) is fulfilled in cases (b) and (c). (Note that here, and in all
other figures unless specified otherwise, the dashed circular line of unit
radius represents the boundary of the underwater obstacle).

In cases where conditions (13)—(15) are satisfied, the following
properties are anticipated:

(a) all fluid particles localised inside the area bounded by the evolving
separatrix should remain in the vicinity of the topography;

(b) all particles (including those passing over the top of the obstacle)
are advected in the direction of the mean flow;

(c) there may exist areas of trapping, partially ventilated by new fluid
particles.

In case (c), because of the initial conditions (8), the selected
individual particle should either remain as long as possible in the
vicinity of the topography or, after finishing the initial stage of quasi-
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FIGURE 1 Plots of (i) x » (normal) and y, , (bold) versus time ¢ and (ii) y,, » versus
Xew at w=m, Up=0.75, V,=0.5, U=006, V=05 and o=(a) 3, (b) 2.8, (c) 2.0.
Designations “e” and “h” denote trajectories of elliptic and hyperbolic specific points
respectively.

periodic localized movements and being found outside the newly-
formed separatrix, be advected downstream.

2.2. Dynamics of a Fluid Particle in the Vicinity
of a Submerged Topographic Feature

2.2.1. Particle Over the Topography (r <1)

If the particle does not leave the limits of the unit circle during its
movement (i.e., it remains over the topographic feature), the system
(6)—(8) is linear and has an analytical solution

x =acos(ot/2)+ b sin(ot/2) + [A sin wt + Bsin(01/2)]/C = x5 + X7,
(16)
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y = b cos(ot/2) — a sin (0t/2) + B[cos wt — cos (01/2)]/C = ys + yr.
(17)

Here, a=x0—(2Vy/o), b=yo+ (2Uy/0), A=Uw—(Va/2), B=Vw—
(Uo[2), C=w’—(c*/4) and subscripts S and T correspond to terms
arising due to stationary and oscillating components respectively of
the external current. The requirement for the particle to remain
over the topography imposes restrictions on the external parameter
combinations

ro+ (4 Wy/o)+(2B/C) <1, A% < B?
ro+ @ Wo/o)+[(4+B)/CI <1, 4> B

where ro = (x2+y2)"* and Wy = (U2+ V2)"%. Note that the
expressions (18) are only sufficient conditions for fulfilling the inequa-
lity r < 1. It is obvious that at the given velocities of the background
current, the relations (18) represent more rigid constraints on the topo-
graphic disturbance than the conditions (13).

For cases of stationary background currents (U= V'=0), conditions
(18) and the solutions (16)—(17) determine a set of circular trajectories
of the type

[x = @Vo/o) + [y + 2 Us/o)) 19)
— 134+ (AW2/0?) = (4ry Wo/| o) cos (B — a),
where cos a=Vy/W,, sin a=—Uy/W,, and the angle 3 is defined by
cos 8= Xxo/ro; sin B = yo/ro. Thus, if a fluid particle having been inside
a kinematically-stationary flow does not leave the limits of the
topographic feature during its motion, it can move only along some
circular orbit within the Taylor column (Ingersoll, 1969). The external
boundary of this column coincides with the limiting location of the
circle [see Eq. (19)] that touches the boundary of the feature.

As can be seen from (16)—(17), the tidal part of the current (x7, yr)
represents a superposition of oscillations (modulated along the y-axis)
with frequencies w and o¢/2. This component of the solution has
resonance at C=0 (w = #0/2), when there are no solutions bounded
uniformly in time, as U# V in the area r < 1.
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If U=V (when, clearly, A= B and the tidal ellipse of the external
field will have the shape of a circle), periodic modulated oscillations
take place along both axes:

xr={2U/[(w)+ (¢/2)]} sin{[(w) + (o/2)] [t/2]} cos {[(w) - (¢/2)] [t/2]},
(20)

yr={-2U/[(w) +(o/2)]}sin{[(w) + (o/2)][¢/2]} sin{[(w) - (a/2)] [t/2]},
(1)

and the singularity is observed only at w= —c¢/2, when the tidal and
topographic components of the external field induce rotation of the
same sign. Now, at w= /2 the solutions (16)—(17) take the simplest
form

x—(2Vy/0o) = a cos wt + ¢ sin wt, (22)

v+ (2Up/o) = b cos wt — a sin wt, (23)

where ¢c=b+(Ujw). It is easy to show that the relations (22)—(23)
define a family of ellipses with centres at the point (2Vy/o, —2Uy/o),
similar to the circles (19) and with semi-axes 4, 4,:

A2 = (a?+bc)/[(a®+b?) cos?y

\ (24)
+2a(c— b)sinycos v+ (a?+ c?) sin® 4]2.

The first of these semi-axes makes an angle v with the x-axis, such
that tan 2y=—2a/(b+c¢).

The solutions (16)—(17) has a periodic structure when quantities w
and o¢/2 are commensurable. Figure 2 demonstrates examples of
periodic trajectories for the case w=n(c/2), for integer values of n. The
amplitudes U, V of tidal components of the external flow were
calculated from the condition of strict equality in (18). The trajectory
of the particle that started its motion at the origin (0, 0) and moves
with the tidal flow, having a circular ellipse, is given in Figure 2a.
Figure 2b shows a similar plot for the particle with initial coordinates
(0, 0.5). Further, Figure 2c corresponds to the tidal ellipse of the
background field being stretched by a factor 2 along the x axis and
Figure 2d represents the stationary x-velocity component tn ke ~dded
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to the background field. In Figures 2(c,d) at n=1, evidently V'=0, as
in this (resonant) case finite solutions exist only when the periodic
component of the external field is absent. Clearly, however,
frequencies are higher than in the tidal oscillation frequencies in
this case. .

It is possible to note the case a=0 of purely periodic motions that
take place for any relationship between w and o. For this case, the
trajectories of the particles coincide with the curves of the form

{[x — (2Vy/o) — D sin (01/2)]/E}*

, (25)
+{{y+ 2Us/0) = D cos (at/2)}/J}" =1,

Set-- Sa0t--

n= n=3

FIGURE 2 Trajectories of a liquid particle at 0 =4, w=no/2, xo=0 and [yo: Up: Vo:
U/V] = (a) [0:0:0:1], (b) [0.5:0:0:1], (c) [0.5:0:0:2], (d) [0.5:0.25:0:2).
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where D=b+(B/C), E=A/C and J= B/C. Such trajectories become
ellipses at D=0.

Figure 3 shows circular (a) and elliptical (b) fluid particle
trajectories; they are identical but have been obtained under different
external parameters. So the left column of this figure shows the curves
over the obstacle along which the particle moves in a stationary
flow [according to (19)]—(la) and in the flow with tidal component
[according to (25)]—-(1b). The right column gives analogous trajec-
tories that are followed by the particle [according to (11)] in the tidal
flow over the flat bottom. Here, the centres of the circles and ellipses
are located respectively at coordinates (0.108; —0.250) and (0.108;
—0.091), with the radius of the circles being 0.704 and x- and y-semi-
axes of the ellipses having values of 0.705 and 0.864 respectively.
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FIGURE 3 Trajectories of a fluid particle w=m, x0=0.108, yo=-0.954 for
[o:Up:Vo:U: V] = (1a) [4:0.5:0.216:0:0], (1b) [4:0.182:0.216:3.941:4.121], (2a)
[0:0:0:2.212:2.212] and (2b) [0:0:0:2.215:2.713].
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This example demonstrates the need for information not only on the
velocities of the flow but also on the bottom topography, when
interpreting results of tracer observations.

The above examples illustrate only some of the set of possible
solutions. In the more complicated case of two arbitrary independent
frequencies, the resulting trajectories have more complex configura-
tions. As it will be seen below in Figure 9, they can have either a
relatively ordered or very complicated structure. In the latter case,
trajectories essentially fill an area inside the unit circle.

2.2.2. A Particle in the Vicinity of the Topographic Feature

When r > 1, an analytical solution of the system (6)—(8) is not
possible because of non-linearity. So, in the general case, use is made
of a numerical algorithm that admits the transition from one form of
the right-hand side expressions in (6)—(7) to another when a fluid
particle crosses the boundary r = 1. In the present case, a Runge-Kutta
method of second order of accuracy was used with a time step of
At=0.01.

It has been established that at C=0, arbitrary values of Uy, V, and
U # V [and in circumstances where the conditions (18) are not already
satisfied], the particle inevitably leave the limits of the unit circle (see
Fig. 4), where the solution (9)—(10) is no longer valid. This result is a
demonstration of the “‘resonance” properties of the system. In all cases
given in the figure, the conditions (15) are fulfilled and the particle
trajectories remain localised in the vicinity of the topography (at least
over the calculation time interval of 500 dimensionless units, with a
time scale taken to be 12 hours). All numerical experiments of this
series have been fulfilled when the external field had tidal ellipses
stretched in the zonal direction (U/V =1.6). The following cases were
examined: (a) steady state component of the current absent; (b)
current has x-component only and (c) current has y-component only.
For each case, the initial location of the fluid particle at xo=0 is
indicated in the bottom part of the figure. The different states of
regulation of various trajectories, noted at the end of Section 2.2.1, are
noticeable. Some concerns about this matter are considered below in
Section 3. Note the qualitative resemblance of the trajectories given
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a)

b)

c)

3

y0=0.25

FIGURE 4 Trajectories of a fluid particle, calculated numerically for c=3, w=1.5,
xo=0, U=0.8, ¥=0.5 and [Uy:¥,] = (a) [0:0], (b) [0.25:0] and (c) [0:0.25], for y, values
shown.

here with those observed in a rather different physical system by Boyer
et al. (1991).

In Figures 5a and 5b, where the external parameters match the
background field of Figure 1, plots are presented to confirm the
suppositions (a)—(c) (see Section 2.1 above) on the existence of
solutions that have been given in the previous section. Detailed
examination of the class (c), the most substantial of the topological
properties, has revealed some regularity in the transition from finite to
infinite motions. Of course, the numerical calculation over the finite
time interval can relate the solution to one of the named types only
approximately. When determining the finite solutions, the calculations
were carried out over the interval [0, T'], T=3000. This exceeds by
three orders of magnitude the range of characteristic time variation,
indicating that t—7 and t—oo are practically equivalent for the
present purposes. If the solution retains its quasi-periodic character
over all this interval, it is adopted as belonging to the class of finite
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a)

b)

c=3

FIGURE 5 Trajectories (a, b) of a fluid particle at w=m, Uy=0.75, V(,=0.5, U=0.6,
V'=0.5 and [xo,yo] values (a) [0.4: —0.2]; (b) [0.7: —0.8], together with (c) schematic
map of distributions of finite and infinite solutions with respect to initial conditions
(see text).

solutions for the given set of parameters. If this property is broken
(i.e., when a particle is no longer in the vicinity of the topographic
feature and begins to move away quickly), the solution should clearly
be regarded as infinite.

Figure 5 gives the results of calculations made according to such
a scheme. Here, all points of the named area of the plane (x, y) are
marked with the interval 0.1 in the sense of every variable. For all of
these points taken as initial conditions (xo, yo) solutions were obtained
by solving the Cauchy problem (6)—(8). Particles that have been
advected from the vicinity of the topography and those that are
trapped are shown in bold and normal styles respectively. The points
marked with squares and circles correspond to the initial conditions
of the problem, its solution being illustrated by Figures 5a and 5b
respectively. It is important to note that the trapped category can
include not only those particles that have been located initially over
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the topography, but also those outside it. Four frames in the upper left
corner of Figure 5 demonstrate a significant property of the flow, that,
depending upon its initial position, the particle can be trapped by a
shallow topography but can drift from a feature of greater height.
Figure 6 shows the phenomenon of the alternation of domains of
existence for finite and infinite solutions with respect to kinematic
- parameters of the external field. This phenomenon is a specific
peculiarity, appearing due to the non-stationarity of the background
field, whereas in the problem of topographic cyclogenesis in stationary
flow over an isolated hill, the ratio between critical velocity values of
the current and the hill height is uniquely determined (Kozlov, 1983;
Zyryanov, 1985, 1995). This figure represents a map of the external
parameter set; these parameters characterise both finite and infinite
motion of the liquid particle in the background flow which has only
non-zero steady state x-component. In Figure 6a the particle has
initial coordinates (0,0) and the tidal oscillations occur only in the
x direction; in Figure 6b the initial position is (0, 0.5) and the tidal
motion corresponds to circular rotation. Examples of the system
(6)—(8) solutions, coordinated with Figure 6, are given in Figure 7,
where transitions from finite to infinite motions (and vice versa) are

a) b)
5} 5F H
4t 4t ;
o o o o : §
3p o H @ 3f
U 8 uv | H
: g
2f 2y :
Lk - ° L
o 6 6 ) :
ol L RS ol R S A B 2
0.0 02 04 06 08 1.0 1.2 0.0 02 04 06 08 1.0 1.2
Uo Uo

FIGURE 6 Distribution of domains of existence for finite (normal) and infinite (bold)
solutions in the beginning of the first quadrant of the plane defined by constant
component of the current amplitude of the tide, at w=m, 0=4, xo=0, V=0 for (a)

=0, V=0; BX=037=0%nd (1)) yo=0.5, U= V. Points are placed with intervals
0 1 in the directions of both coordinate axes. Square and circular symbols correspond to
the points representing the experiments shown in Figures 7 and 9 respectively.
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FIGURE 7 Trajectories of a fluid particle at w=m, 0=4, xo=0, Vy=0 and (a) yo=0,
Up=0.5, V=0; (b) yo=0, U=3, V=0 and (c) yo=0.5, Uy=0.5, U=V.

demonstrated as the different parameters increase monotonically.
Note that points marked with squares on Figure 6 characterise the
parameters at which these calculations have been made. One of
the most interesting cases is demonstrated in Figure 7b, where the
particular possibility of transition from separated to trapped flows
when the drift component of the background flow increases is
illustrated.

Sets of various finite trajectories are demonstrated in Figures 8
and 9. A non-zero steady state y-component of velocity is the charac-
teristic feature of the external field in the series of experiments repre-
sented by Figure 8. In this case, a=0, b=y, and the parameters have
been chosen such that B/C=20.4. In this manner, if the particle stays
over the obstacle during its motion it performs periodic rotation
(See Figs. 8b and 8c) according to (25). It is clear that at yo=0.4, the
trajectories become elliptic when D=0. The evident similarity of
figures that the particle performs at equal values of |y,—0.4| may be
explained by the fact that, in these cases, the value of D in (25) has
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-1.5

y0=0.2 yo=0.4

FIGURE 8 Trajectories of a fluid particle at w=m, 0=4, x0=0.2, Uy=0, V,=04
(@a=0) and (a) U=V=-2.057, (b) U=-3.085, V=-2.711 and (c) U=-1.028,
V=-1.402.

values equal in magnitude but opposite in sign. Figure 9 illustrates the
influence of U and Uy on the structures of the particle trajectories: the
growth of the steady state x-component of the current results in a
deviation to the right of the whole configuration and the increase of
the amplitude of tidal oscillations along the x-axis causes a bigger
deviation of the particle in both the x- and y-directions. Note that the
configurations are symmetrical with respect to the axis normal to the
background flow. As this model does not take friction into conside-
ration, no phenomenon of tidal rectification (Perenne et al., 1997) is
observed here.

2.3. Dynamics of a Patch of Passive Admixture
in the Vicinity of Bottom Topography

The discrete model discussed above may be used for a qualitative
description of the motion of very small fluid volumes, but oceanic
observations (Darnitskiy, 1980) show that the horizontal scale of
anomalous concentrations of different mineral elements in topogra-
phically-controlled regions have, as a rule, dimensions of the order of
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Uo=0.68

FIGURE9 Trajectories of a fluid particle at w=m, 0=4, x0=0, yo=0, vo=0, =0 and
U=(a) 0.8 and (b) 3.4.

the lateral size of the topographic features. In order to investigate the
evolution of finite size admixture patches, it is possible, in particular,
to follow the movement of points belonging to their conditional
external boundaries. The Contour Dynamics Method appears to be
the most convenient way of studying the dynamics of such boundaries,
taking advantage, in the process, of the modification of an algorithm
(Kozlov, 1983) based on a procedure using periodic cubic splines for
numerical interpolation, differentiation and integration of network
functions. Ordinary differential equations for the marker movement
have been integrated by the Runge-Kutta method of the 4th order of
accuracy through the use of “optimum” Gill formulae (Hairer et al.,
1987). The number of reference points was taken in such a way that
along the unit radius circumference were 60 nodes.

The first series of numerical experiments, the results of which are
plotted in Figure 10, had as its principal aim the comparison of
modelling results for discrete and contour models. In the given
background field, a fluid particle placed initially in the point (0, 0)
moves along a circular orbit tangentially to both the abscissa axis in
the point x=0 and the unit circumference in the point (0, —1). Fig-
ure 10 demonstrates the evolution of the outer boundary of an admix-
ture patch initially extending over the full area of the obstacle. As is
apparent from the figure, the patches become deformed and then
divide into parts, with one being advected by the flow and the other
acquiring a relatively-compact form and remaining further inside
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FIGURE 10 Calculation results for the patch of unit radius at w=m, 6=2, Uy=0.5,
Vo=U=V=0.

the Taylor column boundary coincident with the trajectory of the
standard fluid particle.

Figures 11a and 11b demonstrate the evolution of circular patches
of unit radius for the same sets of external parameters as Figure 5 at
o=3 and o=2. In the first case, the patch structure disintegrates; its
significant mass is advected out of the vicinity of the obstacle while
the portion that remains trapped by the topography performs quasi-
periodic oscillations of small amplitude while remaining inside the area
limited by the corresponding sepatratrix. Note that in the three upper
rows of the figure, the patch contours are drawn using an interval of
two units of dimensionless time (i.e., 1 day) and in the lower row an
interval of 0.5 is used to resolve and show changes during a tidal half
period. In the second case (Fig. 11b), the patch is completely advected
by the flow from the vicinity of the topography. Note that, according
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to Figure 5c, there are no trapped portions of the patch in this region
above the obstacle.

3. DIMENSIONAL VALUES OF MODEL PARAMETERS

All parameters cited in the text and the figure captions are given in
dimensionless form. In Table I, relationships are presented between
the values of the dimensionless parameters and their oceanic counter-
parts defined by the typical scales in Section 2. Note that the multi-
ple values shown in the cells of the table relate directly to the
corresponding values in the appropriate parts of figures. Initial
coordinates of the point xg, yo are given with respect to the centre of
the submerged obstacle.

4. DISCUSSION OF RESULTS

The analytical and numerical calculations presented above provide
information on the dynamics of flow over a bottom topographic
feature — a flow that even in the simplest model of a barotropic tidal
current is found to be complex. The dynamics of the flow have been
studied from the point of view of Lagrangian particle movement, in
order to identify with elements of passive admixture. It has been
shown that it is possible to formulate the sufficient conditions for
such a class of individual fluid particle motions when such particles
stay always within the Taylor column defined by the imaginary up-
right cylinder circumscribing the (cylindrical) obstacle. In general,
the particle performs rather intricate quasi-periodic oscillations. For
specific (periodic) relationships between the height of the obstacle and
the frequency of the tide, the oscillations are ellipsoidal or leaf-shaped.
The relative ordering of some trajectories drawn in Figures 8 and 9 for
particles located over the obstacle can be explained by the
approximative fulfilment of the above relationships.

If the particle leaves the boundary of the obstacle, it can either (i)
remain for a relatively long time in its vicinity, performing quasi-
periodic oscillations (which are also sometimes quite ordered), or (ii)
be advected downstream, depending on the relationship between the



TABLE I

Figure Non-dimensional parameters
w o X0 Yo Up Vo U VvV
a) 3.0
b) 3.14 2.8 - - 0.75 0.50 0.60 0.50
c) 2.0
a) 2; 0.0 0.00 0 2; 3; 2; 3
4;5 4,5
b) 4; 0.5 0.00 0 1; 1.5 1; 1.5
4 0 2,25 2,25
c) 6; 0.5 0.00 0 0; 2; 0; 1;
2.66; 3.34 1.33; 1.67
d) 8 0.5 0.25 0 0; 1; 0; 0.5;
1.34; 1.68 0.67; 0.84
a) 3.14 4,0 0.108 —0.954 0.500; 0 0.216; 0 0; 2.212 0; 2.212
b) 0.182; 0 3.941;2.212  4.121;2.713
a) 0; 0.25; 0.00 0.00
b) 1.5 3 0 0.50; 0.25 0.00 0.8 0.5
c) 0.75 0.00 0.25
a) 3 0.4 -0.2
b) 3.14 2.8; 0.7 -0.8 0.75 0.5 0.6 0.5
c) 2 -1.0+1.0 -1.1+1.0
a) 3.14 4 0 0.0 0+1.2 0 05 0
b) 0.5 05 05
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0.5
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0 3
1.9; 2.1;
2.3;2.5
—3.085
0.4 —2.057
—1.028
0 0.8
34
0 0
0.5 0.6
0.15 1

1.9; 2.1;
2.3;25

-2.711
-2.057

—1.402



TABLE I (Continued)

Figure Corresponding dimensional values
w'(s™h h(m) x3(m) v (m) Uy Vs U 12
x10* (m/s) (m/é) (m/s) (m]s)
a) 1920
b) 1.45 1792 - 0.15 0.10 0.12 0.10
c) 1280
a) 0.92; 0 0.00 0 0.4; 0.6; 0.4; 0.6;
0.8; 1.0 0.8; 1.0
b) 1.84; 2150 0.00 0 0.2, 0.3; 0.2; 0.3;
0.4;0.5 0.4; 0.5
c) 2.76; 2560 0 2150 0.00 0 0; 0.40; 0; 0.20;
0.53; 0.67; 0.27; 0.34;
d) 3.68 2150 0.05 0 0; 0.20; 0; 0.10;
0.26; 0.34 0.13; 0.17
a) 1.45 2560; 0 464.4 —4102.2 0.100; 0 0.043; 0 0; 0.442 0; 0.442
b) 0.036; 0 0.788; 0.824; 0.543
0.442
a) 0; 1075 0.00 0.00
b) 0.69 1920 0 2150; 0.05 0.00 0.16 0.10
c) 3225 0.00 0.05
a) 1920; 1720 —860
b) 1.45 1792; 3010 —3440 0.15 0.10 0.12 0.10
c) 1280 —4300+ —4730+
4300 4300
a) 1.45 2560 0 0 0+0.24 0 0+1 0
b) 2150 0+ 0+1
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external parameters (i.e., velocity components of the stationary flow,
characteristics of the tidal ellipse of the background flow and the
height of the bottom topography disturbance). Moreover, this
dependence can be ambiguous, leading to the alternation of domains
of existence for finite and infinite solutions in external parameter
space. As has been noted above, the transition from one class of
motion to the other occurs in the vicinity of the separatrices. It is
known from the theory of Hamiltonian systems (Lichtenberg and
Lieberman, 1982) that layers of stochasticity can arise along the
separatrices. It seems that the afore-mentioned ambiguity is connected
with the failure of regularity of the corresponding solution. In the
present case, the system (6)—(8) is a non-autonomous Hamiltonian
system and has one degree of freedom, but the Hamiltonian and the
position of the separatrix depend explicitly on time. Analogous
peculiarities take place, for example, in a dynamic system with two
degrees of freedom, connected with the mapping of Ulam (Lichtenberg
and Lieberman, 1982). Note that the non-autonomous system (6)—(8)
is equivalent to the autonomous counterpart with two degrees of
freedom.

Comparison between numerical experiments described in two last
sections show that investigations of fluid particle dynamics give
significant information on the character of motion of finite liquid
volumes and not only information on the displacements of centres
of gravity. Many features of solutions obtained for the fate of
Lagrangian particle can be interpreted appropriately for descriptions
of admixture patch movements.

Finally, it is noted that the theoretical results described above have
relevance to topographically-controlled vortices in the ocean, with
some evidence (Zyryanov, 1995) to indicate not only the accumulation
of fish around the summits of seamount topography but also the
apparent requirement for the existence of such a vortex to ensure the
localisation of a closed fish population. From the biological point of
view, such a population is evidently viable only if eggs and fry are
not advected from the vicinity of the seamount. However, hydrologi-
cal studies have shown that even when no topographic vortex is
established over the seamount and no closed streamlines exist for a
current simply passing over the obstruction, stable fish populations
can still be found. The present work indicates how this apparent
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paradox can be explained by appealing to the importance of the tidal
oscillation component of the flow in realising the type (c) regime (see
Section 2.1 above). Likewise, the present study showing quasi-periodic
trajectories extending over large areas demonstrates that in oceanic
regions with significant tidal oscillations how even a small volume of
pollutant can have an adverse effect on a large area of the basin.

Acknowledgements

The work has been completed thanks to the generous financial support
of INTAS (Project 94-3614) and the Russian Fund for Basic Studies
(Projects 95-05-14972 and 96-05-66265). Drs. D. L. Boyer and J. Verron
are thanked for constructive comments that contributed to improve-
ments in the manuscript and Mrs. O. 1. Yakovenko is thanked for her
technical assistance. One of the authors (MAS) is particularly grateful
to Professor V. F. Kozlov for discussions with him of the results of the
calculations.

References

Baines, P. G., Topographic Effects in Stratified Flows, Cambridge University Press,
Cambridge, UK (1993).

Beckmann, A. and Haidvogel, D. B., “Numerical simulation of flow around tall isolated
seamount. Part I: Problem formulation and model accuracy,” J. Phys. Oceanog.
23(8), 1736— 1753 (1993).

Beerens, S. P., Ridderinkhof, H. and Zimmerman, J. T. F., “An analytical study of
chaotic stirring in tidal areas,” Chaos, Solitons and Fractals 4(6), 1011-1029 (1994).

Boyer, D. L., Chabert d’Hieres, G., Didelle, H., Verron, J., Chen, R. R. and Tao, L.,
“Laboratory simulation of tidal rectification over seamounts: homogeneous
model,” J. Phys. Oceanog. 21(10), 1559—-1579 (1991).

Brink, K. H., “Tidal and lower frequency currents above Fieberling Guyot,” J. Geophys.
Res. (Oceans) 100(C6), 10817—10832 (1995).

Chen, C. and Beardsley, R. C., “A numerical study of stratified tidal rectification over
finite-amplitude banks. Part I: Symmetric Banks,” J. Phys. Oceanog. 25(9), 2090 —
2110 (1995).

Chen, C., Beardsley, R. C. and Limeburner, R., “A numerical study of stratified tidal
rectification over finite-amplitude banks, Part II: Georges Bank,” J. Phys. Oceanog.
25(9), 2111-2128 (1995).

Darnitskiy, V. B., “Baroclinic and barotropic topographic vortices in the ocean,”
Voprosy okeanographii, Collection of works of FERSI, Issue 86, 51-70 (In
Russian) (1980).

Eriksen, C. C., ““Observations of amplified flows atop a large seamount,” J. Geophys.
Res. (Oceans) 96, 15227-15236 (1991).



28 M. A. SOKOLOVSKIY et al.

Foreman, M. G. G., Baptista, A. M. and Walters, R. A., “Tidal model studies of
particle trajectories around a shallow coastal bank,” Atmosphere-Ocean 30(1),
43-69 (1992).

Gibson, C. H., Nabatov, V. and Ozmidov, R., “Measurements of turbulence and fossil
turbulence near Ampere seamounts,” Dyn. Atmos. Oceans 19, 175-204 (1994).

Hairer, E., Norsett, S. P. and Wanner, G., Solving Ordinary Differential Equations; I.
Non-Stiff Problems. Springer-Verlag, Berlin (1987).

Ingersoll, A. P., “Inertial Taylor columns and Jupiter’s Great Red Spot,” J. Atmos. Sci.
28(4), 744-752 (1969).

Kozlov, V. F., “Contour Dynamics Method in model problems on the topography
cyclogenesis in the ocean,” Acad. Sci. USSR. Phys. Atmos. and Ocean 19(8), 845—
854 (1983).

Kozlov, V. F., Models of Topographic Eddies in Ocean, Nauka, Moscow (In Russian)
(1983).

Kozlov, V. F. and Sokolovskiy, M. A., “Meander of a barotropic zonal current crossing
a bottom ridge (Periodic regime),”” Oceanology 21(6), 684— 687 (English translation)
(1981).

Lichtenberg, A. J. and Lieberman, M. A., Regular and Stochastic Motion, Springer-
Verlag, Berlin (1982).

Monin, A. S., Ozmidov, R. V. and Paka, V. O., “‘On the mesostructure of flow around
underwater hills,” Dokl. Acad. Sci. USSR 308(1), 192—-196 (In Russian) (1989).

Perenne, N., Verron, J., Renouard, D., Boyer, D. L. and Zhang, X., “Rectified
barotropic flow over a submarine canyon,” J. Phys. Oceanog. 27(9), 1863—1893
(1997).

Perera, M. J. A. M., Fernando, H. J. S. and Boyer, D. L., “Mixing induced by
oscillatory stratified flow past a right-circular cylinder,” J. Fluid Mech. 284, 1-21
(1995).

Roden, G. L., “Effect of seamounts chains on circulation and thermohaline structure,”
in Seamount, Islands and Atolls, Geophys. Monogr. Ser. 43, 335-354, American
Geophysical Union, Washington DC, USA (1987).

Roden, G. I., “Mesoscale flow and thermohaline structure around Fieberling
seamount,” J. Geophys. Res. (Oceans) 96(C9), 16653 —16672 (1991).

Smith, K. L., Schwab, W. C., Nobble, M. and Demousti, C., “Physical, geological and
biological studies on 4 Pacific seamounts. Introduction,” Deep Sea Res. A 36(12),
1785-1790 (1989).

Thompson, L., “Flow over finite isolated topography,” Ph.D. Thesis, MIT/WHOI-
91-05, USA (1990).

Verron, J., “Topographic eddies in temporally varying oceanic flows,” Geophys.
Astrophys. Fluid. Dynam. 35, 257-276 (1986).

Zhang, X. and Boyer, D. L., “Laboratory study of rotating, stratified, oscillatory flow
over a seamount,” J. Phys. Oceanog. 23(6), 1122—-1141 (1993).

Ziemniak, E. M., Jung, C. and Tel, T., “Tracer dynamics in open hydrodynamical flow
as chaotic scattering,” Physica D 76, 123-146 (1994).

Zyryanov, V. N., The Theory of Stationary Oceanic Currents, Hydrometeoizdat,
Leningrad, USSR (In Russian) (1985).

Zyryanov, V. N., Topographic Eddies in the Dynamics of Sea Currents, Institute of Water
Problems of the Russian Academy of Sciences, Moscow (In Russian) (1995).

APPENDIX

All results of the present work have been presented in the context of
the obstacle form being an upright circular cylinder, viz.
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_JL r<n,

where r;=1. In order to indicate qualitatively the general applicabi-
lity of the results to other geometric shapes, two further examples
(as normalised functions) are given below:

(a) a truncated cone, described by

la rSrl,
h()=q 1=(r=r)/(rn=r), rn<r<n, (A2)
07 r>r.

For the example studied here, the values r;=1 and r,=1.5 have
been chosen.
(b) a half wave of the cosine-squared function, described by

h(r) = {(c;os2 (rr/2), r< 1,. (A3)

, r>1

In case (A2), the counterpart expression for (5) is

17 rSI, 1-'4
G(r) =2 2[(ra/2) = (r}/6r*) = (r/3)|/[r2— 1], i <r<mn,
(r2+rira+r3)/3r2, r>r,

and for case (A3)

o= L1/ + (/ar) (sinmr) = (1/xr)* (1 —cos wr)], r<1,
Gl = {u Clmare, T

where, clearly, G(0)=1.

Figure 12 illustrates the behaviour of a fluid particle initially
situated over the centres of each of these obstacles. The kinematic
characteristics of the background flow are such that the x-component
has a value that is twice that of its y-component, both for steady state
velocities and for amplitudes of tidal oscillations. The topographic
parameter o has been derived in such a way that the volume of the
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FIGURE 12 Vertical cuts of submerged obstacles (A1), (A2) and (A3) — (a) and
trajectories of fluid particle motion at w=m, xo=y0=0, Up=0.3, V,=0.15,U=1, ¥=0.5
and o=(1) 1, (2) 0.63 and (3) 3.36 — (b).

bottom obstacle is the same in all three cases. The figure shows that
though there is a clear qualitative similarity of trajectories, the
“trapping” features of the obstacle (A3) are more pronounced.



